RS-50 (R442A)

Low global warming replacement for R404A, R507 and R22 in refrigeration

Low global warming & higher efficiency replacement for R404A & R507

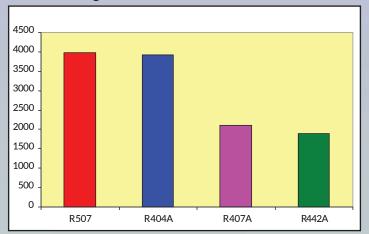
RS-50 has a Global Warming Potential (GWP) of less than one half of R404A together with a higher efficiency which delivers energy savings & a lower contribution to global warming.

RS-50 can be used to replace R404A in both new & existing equipment. Mass flow of RS-50 is lower than R404A and R507 so that reducing the opening of the expansion device may be required. No changes to other hardware are necessary. A significant increase in energy efficiency compared to R404A and R507 can be expected. Users will achieve a lower carbon footprint due to the lower direct GWP of the refrigerant & its inherent higher efficiency.

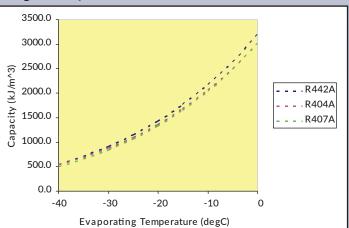
Replacement for R22 in refrigeration applications

RS-50 is a non ozone depleting and non flammable replacement for R22 in medium and low temperature refrigeration applications. The efficiency and cooling capacity of RS-50 provides a close match for R22 in overall system performance. How rate is identical to R22 which avoids the need to change or alter existing pipework.

Performance Characteristics


- Global Warming Potential less than half of R404A & R507
- Suitable in OEM & retrofit applications
- ASHRAE safety classification of A1
- Higher Coefficient of Performance than R404A & R507
- Higher capacity than R404A, R507 & R22

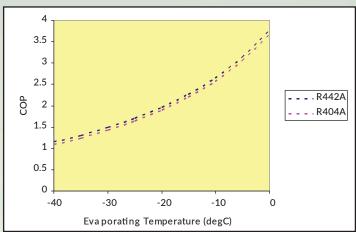
- Effective at medium and low temperatures
- Good match for R22 in refrigeration applications
- Mass flow equivalent to R22 and considerably lower than R404A & R507
- Zero Ozone Depletion Potential
- Non flammable & low toxicity


RS-50 (R442A)

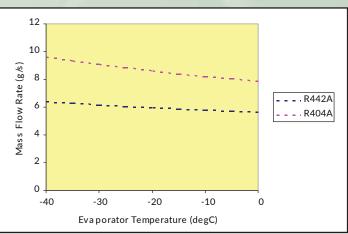
Global Warming Potentials

Refrigerant Capacities

Applications


Because the properties of RS-50 are similar to R404A, it is suitable for use in many of the applications where R404A is commonly found including supermarket display cases, cold stores, freezers, , refrigerated transport, ice machines, cold storage, transportation of foodstuffs, freezer cabinets, beer cellars, freeze dryers & environmental test chambers.

R22 is also used in many of these refrigeration applications where RS-50 can be a suitable replacement.


Lubricants

RS-50 is compatible with the same (POE) lubricants which are commonly used with R404A so that there is no need to change the oil when converting from R404A to RS-50. When replacing R22 with RS-50, the lubricant should be changed to a polyol ester oil.

Mass Flow Rates

Safety

RS-50 is non flammable under all conditions of fractionation as per ASHRAE Standard 34. The components of RS-50 have been subjected to toxicity tests carried out by Alternative Fluorocarbons Environmental Acceptability Study (AFEAS), and have been declared to be of low toxicity. RS-50 has been designated a refrigerant number of R442A by the ASHRAE with a safety classification of A1.

Servicing

Because RS-50 is a blend, it should be charged into the system in the liquid as opposed to vapour form. There is no need to make hardware changes when converting from R404A to RS-50 other than reducing the opening of the expansion device. Because RS-50 has a similar flow rate to R22, there is no need to adjust or change the expansion device during a retrofit.

RS-50 (R442A) Pressure-enthalpy chart

RS-50 (R442A) Physical Properties

PROPERTY		RS-50	R404A	R22
Molecular Weight		81.8	97.6	86.5
Boiling point (1 atm)	°C °F	-46.5(1) -51.6(1)	-46.2(1) -51.2(1)	-40.8(1) -41.5(1)
Temperature Glide	K	4.6	0.5	0
Critical Temperature	°C °F	82.4 180.3	72.1 161.7	96.1 205.1
Critical Pressure	bara psia	47.6 690	37.3 541	49.9 724
Liquid Density (25°C)	kg/m3	1108	1044	1191
Density of saturated vapour (25°C)	kg/m3	47.7	65.3	44.2
Latent Heat of Vaporisation at boiling point	kJ/kg	266(1)	200(1)	234
Cv (25°C & 1bara)	kJ/kg.k	0.727	0.784	0.559
Cp (25°C & 1bara)	kJ/kg.k	0.838	0.877	0.662
Cp/Cv (25°C & 1 bara)		1.152	1.118	1.185
	bara psia	13.3(1) 192(1)	12.6(1) 182(1)	10.4 151
Vapour Viscosity (25°C & 1 bara)	cР	0.0126	0.0120	0.0126
Liquid Viscosity (25°C)	cР	0.141	0.128	0.164
Liquid Thermal Conductivity (25°C)	W/m.K	0.0857	0.0636	0.0835
Surface Tension (25°C)	N/m	0.00661	0.00455	0.00808
Specific heat of liquid (25°C)	kJ/kg.K	1.58	1.54	1.26
Ozone Depletion Potential	ODP	0	0	0.055
Flammability limit in air (1 atm)	vol%	none	none	none
Inhalation exposure (8 hour day & 40 hour week)	ppm	1000	1000	1000
(1) Bubble Point				

